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Abstract The high-order accuracy of Fourier method makes it the method of choice
in many large scale simulations. We discuss here the stability of Fourier method for
nonlinear evolution problems, focusing on the two prototypical cases of the inviscid
Burgers’ equation and the multi-dimensional incompressible Euler equations. The
Fourier method for such problems with quadratic nonlinearities comes in two main
flavors. One is the spectral Fourier method. The other is the 2/3 pseudo-spectral
Fourier method, where one removes the highest 1/3 portion of the spectrum; this is
often the method of choice to maintain the balance of quadratic energy and avoid
aliasing errors. Two main themes are discussed in this paper. First, we prove that as
long as the underlying exact solution has a minimal C!*¢ spatial regularity, then both
the spectral and the 2/3 pseudo-spectral Fourier methods are stable. Consequently, we
prove their spectral convergence for smooth solutions of the inviscid Burgers equation
and the incompressible Euler equations. On the other hand, we prove that after a
critical time at which the underlying solution lacks sufficient smoothness, then both
the spectral and the 2/3 pseudo-spectral Fourier methods exhibit nonlinear instabilities
which are realized through spurious oscillations. In particular, after shock formation in
inviscid Burgers’ equation, the total variation of bounded (pseudo-) spectral Fourier
solutions must increase with the number of increasing modes and we stipulate the
analogous situation occurs with the 3D incompressible Euler equations: the limiting
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Fourier solution is shown to enforce L?-energy conservation, and the contrast with
energy dissipating Onsager solutions is reflected through spurious oscillations.
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1 Introduction

Spectral methods are often the methods of choice when high-resolution solvers are
sought for nonlinear time-dependent problems. Here, we are concerned with the sta-
bility and convergence of Fourier method for PDEs with quadratic nonlinearities: we
focus our attention on the prototypical Cauchy problems for the inviscid Burgers’
equation and the incompressible Euler equations.

The Fourier methods for problems involving quadratic nonlinearities come in two
main flavors: the spectral Fourier method and the 2/3 smoothing of pseudo-spectral
Fourier method. The spectral Fourier method is realized in terms of N-degree Fourier
expansions, uy (x, 1) = Zlkls N Uk (1)e’®X, where Qg (1) are the Fourier moments of
u(x, 1)

1 .
(1) = W/u(x)e*lk"‘dx, k:= (ki, ..., kq) € Z°.
']Td

The computation of these moments in nonlinear problems is carried out by convo-
lutions. These can be avoided when the uy’s are replaced by the discrete Fourier
coefficients, sampled at the (2N + 1)? equally spaced grid points

1 d . 2mv
u (@) = — u(x,, t)e kxv Xy = ——,
k(1) (2N+1) ZW (Xp. D)e V=N
Xy €

#
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Stability and spectral convergence of Fourier method

where Tg is the discrete torus,

d [ 2y }
Ty = 1% [ Xy ==, v=(W1,...,9), 0<v; <2N .
2N +1

The pseudo-spectral Fourier method is realized in terms of the corresponding expan-
sion, uy (x, 1) = Zlkl N Uk (7)e'®*. Here, we have the advantage that nonlinearities
are computed as exact pointwise quantities at the grid points {X,},, but new aliasing
errors are introduced. To avoid aliasing errors and their potential instabilities, high
mode smoothing is implemented, which results in the so-called 2/3-smoothing of
pseudo-spectral Fourier method: it is realized in terms of the 2N /3-degree expansion,
uy(x,t) = z|k|§2N/3 oxlik (£)e'¥*. This is the spectral method of choice in many
time-dependent problems with quadratic nonlinearities.

To put our discussion into perspective we begin, in Sect. 2, by recalling the linear
setup of standard transport equation. The spectral Fourier method is L?-stable. But the
pseudo-spectral Fourier method is not [ 14]: itis only weakly stable, due to amplification
of aliasing errors when the underlying solution lacks sufficient smoothness. Strong L2-
stability is regained with the 2/3-smoothing of pseudo-spectral Fourier method [42];
in the linear setup, the de-aliasing in the 2/3-method introduces sufficient smoothness
to maintain convergence. This is one of the main two themes of our results on nonlinear
problems: sufficient smoothness guarantees stability and hence spectral convergence.
In Sect. 3 we explore this issue in the context of inviscid Burgers equations, proving
that as long as the solution of the inviscid Burgers equation remains smooth, u(-, t) €
C;*“, then both the spectral and the 2/3-pseudo-spectral Fourier approximations,
un(-,t), converge to the exact solution. Moreover, they enjoy spectral convergence
rate, namely, the convergence rate grows with the increasing smoothness of u(, t),

/quv(xﬁ) —u(x, 1)|?dx

/ 3 3
< elolux (0l (N—2S||u(-, 013 + N2~ max [Ju(-, r)lle), s>
=

A similar statement of spectral convergence holds for the spectral and 2/3 pseudo-
spectral Fourier approximations uy of the incompressible Euler equations: in Sect. 4
we prove that as long as u(-, f) remains sufficiently smooth solution of the d-
dimensional Euler equations, u(-, t) € C ;4'"‘, then

luy G, 1) —u(, D3,
d
< ezforllvxll(.’f)HLOOdT. (N—2s lu(-, 0) ||%{S +N%+1—s mﬂf lu(-, 7) ||Hs), s> §+1_
T<
These results support the superiority of spectral methods for problems with smooth
solutions. When dealing with solutions which lack smoothness, however, both the spec-

tral and 2/3 pseudo-spectral Fourier methods suffer nonlinear instabilities. This is the
other main theme of the paper, explored in the context of the inviscid Burgers equation
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and the incompressible Euler equations in the respective Sects. 3.2 and 4.2. In particu-
lar, we prove that after shock formation, the spectral and 2/3 pseudo-spectral bounded
approximations of the inviscid Burgers solution must produce spurious oscillations as
their total variation must increase, |luy (-, t)||l7y = /N This is deduced by contra-
diction: in Theorem 3.4 below we prove, using compensated compactness arguments,
that an L?-weak limit of slowly growing TV Fourier solutions, # = w lim uy, must
be an L2-energy conservative solution, which cannot hold once shocks are formed.

A similar scenario arises with the Euler solutions where the spectral and the (2/3
pseudo-)spectral approximations of Euler equations enforce conservation of the L>-
energy. Although there is no known energy dissipation-based selection principle to
identify a unique solution of Euler equations within the class of “rough” data (similar
to the entropy dissipation selection principle for Burgers’ equations), nevertheless we
argue that the L?-energy conservation of the (pseudo-)spectral approximations may be
responsible to their unstable behavior. While L?-energy conservation holds for weak
solutions with a minimal degree of 1/3-order of smoothness (Onsager’s conjecture
proved in [3,8,13]), there are experimental and numerical evidence for the other part
of Onsager’s conjecture that anomalous dissipation of energy shows up for “physical-
turbulent” L2-solutions of Euler equations [7]. Whether this observed anomalous
dissipation of energy should be due to spontaneous appearance of singularities in
smooth solutions of the Euler equation or to the fact that physical initial data may be
rough is a completely open problem. However after several preliminary breakthrough
[37] and [39] the following fact are now well established. Indeed, there are infinitely
many initial data (which of course are not regular) leading to infinitely many weak
Euler solutions with energy loss [10]. In particular there are energy decaying solutions
which for almost every time belong to the critical regularity ci e [4]. Thus, if the
numerical method captures such “rough” solutions then the “unphysical” conservation
of energy which is enforced at the spectral level has to vanish at the limit, leading to
spurious oscillations.

The nonlinear instability results in Sects. 3.2 and 4.2 emphasize the competi-
tion between spectral convergence for smooth solutions vs. instabilities for problems
which lack sufficient smoothness due to their quadratic nonlinearities. We then close
this paper with two complementary results. First, in Sect. 5 we make a brief com-
ments how these instabilities can be overcome using the class of spectral viscosity
(SV) methods which entertain both—spectral convergence and nonlinear stability,
[2,16,18,38,43,45]. This is achieved by adding a judicious amount of spectral viscos-
ity at the high-portion of the spectrum without sacrificing the spectral accuracy at the
lower portion of the spectrum. Finally, in we Sect. 6 we note that the above stability
result for smooth solutions of nonlinear equations go beyond quadratic nonlinearities,
where we prove the stability of Fourier method for smooth solutions of the nonlinear
isentropic equations.

1.1 Spectral convergence

Expressed in terms of the Fourier coefficients, w(k), the spectral Fourier projection
Pylw](x) of w € L'[T"] is given by
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Stability and spectral convergence of Fourier method

_ -~ ik-x P R 1 / —ik-x o d
PN[w](x)_“(IZ:Nw(k)e DK = o [ we k= (b ko) €27
= Td

The convergence rate of the truncation error,

(I = Pyl = > ke, (1.1)

k|=N

is as rapid as the global smoothness of w permits (and observe that the degree of
smoothness is allowed to be negative),

1T — POl < NP wllgs, s>reR;

in particular,

(1.2)

(SRS

max [( — P)[w]X)| S NI wllgs, s>
X

These are statements of spectral convergence rate: the smoother w is, the faster is
the convergence rate of (I — Py)[w] — 0. In practice, one recovers exponential
convergence which characterizes analytic regularity or at least root-exponential rate
for typical compactly supported Gevrey-regular data [48].

1.2 Aliasing

Seth := 21%,% as a discrete spacing. If we replace the integrals with quadrature based
on sampling w at the (2N + 1)?equi-spaced points, X, := vh, v := (v],...,Vy) €
{0,...,2N}¢, we obtain the pseudo-spectral Fourier projection,

d
ynlwl = > wde™, Bk = (%) > wx)e k| < N.
k<N x,€T4

Here, w(k), are the discrete Fourier coefficients.! The mapping w +— ¥y[w] is a
projection: ¥y [w](x) is the unique N-degree trigonometric interpolant of w at the
(2N + 1)-gridpoints, ¥y [w](Xy) = w(Xy), |v| < 2N. The dual statement of the last
equalities is the Poisson summation formula, which determines the discrete w(k)’s in
terms of the exact Fourier coefficients, w(k)’s,

(k) = (k) + > wk+L2N+1)), |kl <N,
££0

! There is a slight difference between the formulae based on an even and an odd number of points; we
chose to continue with the slightly simpler notations associated with an odd number of points.
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where summation runs over all d-tuples, £ = (£1, ..., 4£4) # 0. It shows that all the
Fourier coefficients with wavenumber k[mod (2N + 1)] are “aliased” into the same
discrete Fourier coefficient, wi. It follows that the interpolation error consists of two
main contributions,

(I —yw)w] = U = Py)[w] + An[w],

where in addition to the truncation error (I — Py)[w]in (1.1), we now have the aliasing
error,

An[w](x) := Z Z@(k+e(2N+1)) kX, (1.3)
k<N \[¢[>1

Both, (I — Py)[w] and A y[w], involve high modes, w(p), |p| = N. Consequently,
if the function w(-) is sufficiently smooth then they have exactly the same spectrally
small size, e.g. [46, §2.2]

_ d
lAN[willgs S IUT = P)wlllags SN wlgr, r>s> 5

The situation is different, however, if w lacks smoothness. Since the truncation error
is orthogonal to the computational N-space whereas the aliasing error is not, aliasing
and truncation errors may have a completely different influence on the question of
computational stability. One such case is encountered with the stability question of
spectral vs. pseudo-spectral approximations of hyperbolic equations.

2 Linear equations—lack of resolution and weak instability

We begin with the spectral Fourier method. We want to solve the 2 -periodic scalar
hyperbolic equation

%u(x, 1)+ % (gX)u(x,1)) =0, x € T([0,2r)), g € Cl[O, 2r],  (2.1)

subject to prescribed initial conditions, u(-, 0), by the spectral method. To this end we
approximate the spectral projection of the exact solution, Pyu(-, t), using an N-degree
polynomial, un (x, 1) = > <y Tk ()¢, which is governed by the semi-discrete
approximation [15,22,32]

d 0
3 un(x,t) + —Pylgx)un(x, )] =0. (2.2a)
t 0x

The approximation is realized as a convolution in Fourier space

d _. ) ~ o~
STk = lngq(k — paj(0, k=-N,...,N, (2.2b)
JI=
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which amounts to a system of (2N + 1) ODEs for the computed u(r) :=
@ N, ... aN))T.

The L2-stability of (2.2a) is straightforward: though the truncation error which
enters (2.2a), d,(I — Py)[g(x)un(x)] need not be small, it is orthogonal to the N-
space, which yields the L2-stability bound, [luy (-, )I|7, < edo! || (-, 0|7, with
9o = maxy |g’(x)].

To convert this stability bound into a spectral convergence rate estimate, consider the
difference between the spectral method (2.2a) and the Py projection of the underlying
equation (2.1): one finds that ey := uny — Pyu, satisfies the error equation

0 0 0
a—eN(x, 1)+ —Pylgx)en(x, )] = ——Pn [q(x)(I — Pn)[ul(x,D)].
t 0x ox

The L>2-stability bound of the spectral method implies the error estimate,

/ lun (x, 1) — Pyu(x, t)|*dx

< el (n(l = Py)u. 07> + N? max [[(/ = Py)lul(, r)niz) :

This quantifies the spectral convergence of the Fourier method (2.2a): the convergence
rate increases together with the increasing order of smoothness of the solution,

1 7
(o) = uC, Dll 2 S 39! (N‘S||u(-,o>||m+N1—Srgg;< . Ol ) s> 1.

(2.3)
In practice, one recovers exponential convergence for analytic solutions (and root-
exponential convergence for more general Gevrey data).

Next, we turn to consider the pseudo-spectral Fourier method of (2.1). Here, we
avoid the need to compute convolutions as in (2.2b) at the expense of additional
aliasing errors which are responsible for weak stability. As before, we use an N-
degree polynomial, uy (x, t) = Z\klﬁN T (t)e'*™  as an approximation for Yy u(-, t),
which is governed by the semi-discrete approximation, [15,22],

d 9
a—MN(x, 1+ —yYnlg(x)uyn(x, )] =0. 2.4
t 0x

This equation can be realized in physical space

d N o p 2N
E“N(xjy 1) = k;}:\'[k(qu,v)kelk"f, (qun)y = T ;q(xv)uN(xv)e_‘k"V,

which amounts to a system of (2N + 1) ODEs for the computed gridvalues u(t) :=
u(xo, 1), ... u(xon, ).
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To examine the stability of (2.4) we repeat the usual L>-energy argument for the
spectral approximation in (2.2a): decompose ¥y = Py + Ay, to find

contribution of truncation contribution of aliasing

1d d d
3 o lun IR = / - Palg oyl + / un - Anlg@uyldx  25)

The first term on the right consists of truncation error which does not exceed
%qgo llun (-, )||*. Thus, the stability of the Fourier approximation (2.4) depends solely
on the aliasing contributions, A y[g (x)uy]: using (1.3) to expand the second term on
the right, we find

0 = o~ ~

/uNaAN[q(x)uN]dx =2mi Z uj(Hur) (j—k) -Zq (J—k+LQ2N+1)).
lil.lkI<N 050

(2.6)

Observe that the terms on the right, Z(#O q(j —k+£Q2N + 1)), are of order O(N)
for |j — k| ~ 2N, ¢ = =1, and this can occur only for high wavenumbers, |j| ~
k| ~ N. Thus, there is possible O(N) amplification of the high Fourier modes,
|fij (®)1, 1jl ~ N. Unfortunately, these Fourier modes need not be small due to lack
of a priori smoothness, and aliasing may render the Fourier method as unstable.

Indeed, we recall that even if the solution of (2.1) remains smooth, the exact solution
of (2.1) develops large gradients of order [U(r)| ~ exp(gL,t) when g (x) changes sign,
and consequently the Fourier method does experience spurious oscillations precisely
because of amplification of aliasing errors. The detailed analysis carried out in [14]
shows that these large gradients require N > ¢’ modes in order to be fully resolved;
otherwise, the exact solution u(-, t) remains under-resolved by the pseudo-spectral
Fourier approximation. Without these many modes, the under-resolved Fourier approx-
imation contains O(1) high modes which are amplified by a factor of order O(N),
yielding weak instability, noticeable as the spurious oscillations in Fig. 1. Thus, alias-
ing errors cause the Fourier solution spurious O(N) growth due to lack of resolution.
The corresponding error estimate for the pseudo-spectral approximation reads [14,
theorem 4.1]

lun G, 1) = yvul, 0l 2

< eCotnet (NI_SHM(',O)HHS + N2 max Juc., r)nm), 5> 2,
T<
reflecting the loss of power on N when compared with the spectral estimate (2.3).

2.1 The 2/3 de-aliasing Fourier method and strong stability

One way to regain the stability of the pseudo-spectral Fourier method in (2.4) is to set
the highest pseudospectral modes in (2.4) () = 0, |j| ~ N. This prevents unstable
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growth due to aliasing. For example, assume that we truncate the last 1/3 of the modes
of uy (any other fixed fraction of N will do). To this end, we use a smoothing operator
S which is activated only on the first %N modes while removing the top 1/3N of the
modes. We up with the so-called 2/3 pseudo-spectral Fourier method,

0 d ~ ikx
&MN(xvt)‘f‘ale[CI(')SuN](xst):Oy Suy = Z oxtiy (1)e*; (2.7a)
lk|<2N

To retain spectral accuracy, the smoothing factors ox € (0, 1] do not change a fixed
portion of the lower spectrum

1, |kl<iN
ok (2.7b)
0, 1], N < k| < 3N.

m

The L>-stability of the 2/3 method follows along the lines of [42, Sect. 6]. Indeed,
the aliasing contribution in the 2/3 method corresponding to (2.6) amounts to

a -
/ (Sun) 5 ANIgO)(Sum)ldx =27i 3, >, oo (Oa(1) (j = k)

IjI<3N [k|<3N
|j—k+L@N+D)|=2N

DG —k+L2N+1)).
040

Observe that the terms involved in the inner summation on the right are now restricted
to high wavenumbers, |j —k + £(2N + 1)| > %N sothat [g(j —k+ 22N + 1))| <
llgllcr N~". Hence

d
‘ / (Sun) - ANlg () (Sun)ldx| S lgller N7 x |Sunl>,  r=1. (28)

Using (2.8) with r = 1 together with standard spectral bound we arrive at

1d d
YT /(Suzv)(x, Huy(x, t)dx = —/(SMN)—(PN + AN)g()(Sun)ldx
t 0x

CqlollSun (. 0|17

IA

Thus, by activating the smoothing operator we removed aliasing errors and the resulting
2/3 de-aliased pseudo-spectral method (2.7) regained the weighted L>-stability

2 2Cql t 2
lun G0l < @ uy 0l

/(Sw)(x, Hw(x, )dx =2n Zak|ﬁk(t)|2.

k|<3N

2
lw, DIz
1
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The corresponding error equation for ey := Suy — Su reads (we skip the details)

0 0 0

—en + — (Slgen]) = ——S[g(x)I — S)[ul(x, D],

ot 0x ox
and the spectral convergence rate (2.3), follows: for s > 1 there exists a constant,
C = C, such that

/ —g —g
lun = ullz, S S0 (N ., O)lzs + N'~* max ||u<~,r>||m), s> 1.

Remark 2.1 (Spectral accuracy and propagation of discontinuities) Hyperbolic equa-
tions propagates H* regularity: |u(-, t)||gs < €S |lu(-,0)|gs < oo. Thus, the
convergence statement in (2.3) implies spectral convergence of the spectral Fourier
method and 2/3 Fourier method for H*-smooth initial data. However, when the ini-
tial data is piecewise smooth, the exact solution propagates discontinuities along
characteristics, and the (pseudo-)spectral approximations of jump discontinuities
in u(-,t) produces spurious Gibbs oscillations [48]. Nevertheless, thanks to the
H?-stability of the spectral Fourier method and the 2/3 pseudo-spectral methods,
lunC, Ol gs S eCslaloot ||y p (-, 0) |l s » measured in the weak topology of s < 0, the
(pseudo-)spectral approximations still propagate accurate information of the smooth
portions of the exact solution. This is realized in terms of the convergence rate (we
skip the details)

luny — ullgr

< Gt (Nrsllu(u Ol s + N7 max [[u(., T)”H*‘) , r<s—1<-—1.

It follows that one can pre- and post-process uy (-, t) to recover the pointvalues of
u(-, t) within spectral accuracy, away from the singular set of the solution, [1,26,27].
The point to note here is that although the Fourier projections of the exact solution,
Pyu(-,t) and Y¥yu(-, t) are at most first-order accurate due to Gibbs oscillations, the
post-processing of the computed u y which is realized by its smoothing using a proper
o-mollifier (2.7b) (or see (3.6¢) below) does both—retains the stability and recovers
the spectrally accurate resolution content of the Fourier method.

3 The 2/3 de-aliasing Fourier method for Burgers equation

We now turn our attention to spectral and pseudo-spectral approximations of non-
linear problems. Their spectral accuracy often make them the method of choice for
simulations where the highest resolution is sought for a given number of degrees of
freedom. We begin with the prototypical example for quadratic nonlinearities, the
inviscid Bugers’ equation,

d 19 ,
Eu(x, 1)+ za—xu (x,t) =0, x € T([0, 2m)), 3.1
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subject to 27 -periodic boundary conditions and prescribed initial conditions, u(x, 0).
In this section we show that as long as the solution of Burgers equation remains
smooth for a time interval r < T, the spectral and 2/3 de-aliased pseudo-spectral
approximations converge to the exact solution with spectral accuracy.

3.1 Stability and convergence for smooth solutions

We begin with the spectral approximation of (3.1), uy (x, 1) = > g (1)e'**, which is
governed by,
9 n( t)—l—la(P [2]( t)) 0, 0<x<2 (3.2)
—upy(x, B uy | (x, =0, <x <2m. .
ar 20x VNN

The evaluation of the quadratic term on the right is carried out using convolu-
tion and (3.2) amounts to a nonlinear system of (2N + 1) ODEs for u() =

WU—_N (), ..., uN@)T.

Theorem 3.1 (Spectral convergence for smooth solutions of Burgers’ equations).
Assume that for 0 < t < T, the solution of the Burgers equation (2.1) is smooth,
u(-, 1) € L*®([0, T.], C1*%(0, 271). Then, the spectral method (3.2) converges in
L([0, Te], L*(0, 27]),

lunC.t) —uC,Hllz2—0, 0=r=T.

Moreover, the following spectral convergence rate estimate holds for all s > %,

lun (. 1) —uC-. D3,

| W

< elius et (N%' e )l + N3 max fu, r)||Hs), s >
=

Proof We rewrite the spectral approximation (3.1) in the form

3 duy 19

— — N __ (=P 2 )
stV a2 T 2ax T Pwluyl

The corresponding energy equation reads

d u%, 0 u}\, uy 0 >
duy Oy _un9 ., p . 33
002 Taxe - 2 axd T Pwluyl (3.3)

Integration yields the energy balance

1d

1
S u3 (x, dx = 5/uNax(I — Py)[u3y)dx =: ;.
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The term on the right vanishes by orthogonality, Z; = —5 f dun (71— py) [u%v]dx =0,
and hence the solution is L2-conservative,

lun G Oll2 = llun G, 0) 22 4

Next, we integrate (uy — w)? = un|? — |ul? — 2u(uy — u): after discarding all
terms which are in divergence form, we are left with

2 2
%di (uy— u)zdx——/(mlv| —ﬂ—u(uN—u))

2/uNax(I PN)[uN]dx /8,(u(uN—u))dx =:T1+71.

Recall that 7 vanishes. As for the second term Z,, we decompose it into two terms,

o) :/Bt (u(uy —u))dx E/u,(uN —u)dx—l—/u(atuN — o;u)dx,

and using (3.1), (3.2) and (3.3) to convert time derivatives to spatial ones, we find

I = —/uux(uN —u)dx —/uax > " dx + E/uax(l — Py)[uyldx
”%v u? 1
= —/uux(uN —u)dx +/ux(7 — ?)dx — E/MX(I — PN)[M%,]dx

2 2
_ /ux (%N - ”7 — uuy — u))dx — %/ux(l — Py)[u’ 1dx.

Eventually, we end up with

d )| |
Ea/luN(x,t)—u(x,t)de < M/WN(XJ)_”(XJ)F@C—EeN,

(3.5a)
where the error term, ey, is given by

ey = /M%V(I — Py)[uy)dx (3.5b)

Observe that under the hypothesis u, € L{° C?’“, and hence by Jackson’s bound [11]
and the L2-bound (3.4) one has

— 0.

len (O] S max (1 = Pl (v, D11 - lun Il S <7
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With (3.5) one obtains,

/|uN<x,r)—u<x,r)|2dx < eUéo“;“)/mN(x,O)—u(x,0)|2dx
t t

+ / U0y (D)ldT, UL (t;1):= / litx (-, $)]oods.

0 S=T

and convergence follows. Moreover, with uy (-, 0) = Pyu(-, 0) we end up with spec-
tral convergence rate estimate

/ lun (x, 1) — u(x, 1)[*dx

| W

! 3
< el s (D) locdt (N“uu(-,mn%,s + N2 max ., r>||Hs) L8>
<

O

Next, we turn to consider the pseudo-spectral approximation of Burgers equation
[15,22],

%uN(x, 0+ %% (vw [ ]@.0) =0, xeTqo,2m)).

Observe that (3.1) is satisfied exactly at the gridpoints x,,

%MN(XV, H+ %% (wN [u%\,] (x, t))ix:xv =0, v=0,1,....2N.
The resulting system of (2N + 1) nonlinear equations for u(r) = (u(xp,1),...,
u(xon, t))—r can be then integrated in time by standard ODE solvers. The pseudo-
spectral approximation introduces aliasing errors which were shown to introduce weak
instability already in the linear case. To eliminate these errors, we consider the 2/3
de-aliasing Fourier method, consult (2.7a)

9 19
SN (D) + 5o (wN [(SuN)z] (x, t)) —0, xeT(0,27)), (3.6a)

where Suy denotes a smoothing operator of the form

2N
~ ; N h .
Suy = E o (t)e*™, uy(t) = E U_EouN(xv, 1)e ke (3.6b)

k|<3N

The smoothing operator S is dictated by the smoothing factors, {ak}| K<2N which

truncates modes with wavenumbers |k| > %N while leaving a fixed portion—say, the
first 1/3 of the spectrum, viscous-free. This is the same smoothing operator Suy we
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Stability and spectral convergence of Fourier method

considered already in the linear 2/3 method (2.7a). In typical cases, one may employ
a smoothing mollifier, o (-) € C*°(0, 1), setting

=1, &<1,
ak=0(|]]:]—|), o€ e 1), }<&<3, (3.6¢)
=0, 3=<é&<1

This is the 2/3 de-aliasing Fourier method which is often advocated for spectral
computations, in particular those involving quadratic nonlinearities [17,19,20,30].

In what sense does the 2/3 method remove aliasing errors? to make precise the
de-aliasing aspect of (3.6), consider the 2/3 truncated solution u,, := Suy. Here we
emphasize that we are dealing with the smoothed solution, u,,, of degree m := %N .
Observing that truncation commute with differentiation, we find

ad 10 2
St (5, 1) + 5 S (wN[ufn]) () =0, deg(uy) =m:=IN. (37)
We now come to the key point behind the removal of aliasing in quadratic nonlin-
earities: since u,, (k) = 0 for |k| > %N then u2, (k) = 0O for [k| > %N hence
ul,(k+€2N +1)) = 0 for k| < %N, ¢ # 0; consequently, since the smoothing
operator S acts only on the first %N mode, S(Ay ufn) = 0, and we conclude

S (wwlin]) @, = S ((Py+ AN 1) (v, ) =S (Pulig]) (x, ) = Sl (x. ).

We summarize by stating the following.

Corollary 3.2 Consider the 2/3 de-aliasing Fourier method (3.6) then its 2/3
smoothed solution, u,, ‘= Suy, satisfies

3 19 . 2
om0, 1) + EaS[ufn](x, n=0, Sw= > o™, m= 3N (3.8)

[k|<m

Thus, by truncating the top 1/3 of the modes, we de-aliased the Fourier method (3.6a),
in the sense that (3.8) does not involve any aliasing errors: only truncation errors,
I - 8)[u,2n] are involved. Indeed, the formulation of 2/3 method in (3.8) resembles
the m-mode spectral method (3.2). The only difference is due to the fact that unless
o = 1, the smoothing operator S is not a projection’

The following theorem shows that as long as the Burgers solution remains smooth,
the 2/3 de-aliasing Fourier method is stable and enjoys spectral convergence.

2 When o =1,thenS = P N and the 2/3 method coincides with the spectral Fourier method (3.2) with
3

m= %N modes,

a 10 ) 2
Euln(xv[)-‘rEapﬂl[um](xvt):os |k|§§N-
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Theorem 3.3 (Spectral convergence of the 2/3 method for smooth solutions). Assume
that for 0 < t < T, the solution of the Burgers equation (2.1) is smooth,
u(-, 1) € L>([0, T.], C'**(0, 27]). Then, the 2/3 de-aliasing method (3.6) converges
in L>([0, T¢1, L*(0, 2x]),

lumC, 1) —u(, Oll2 -0, 0=<r=<T,

and the following spectral convergence rate estimate holds

lun (1) —uC. 03,

N W

< elo s D)lede (N—anu(-, 0)II3c + N2~ max Juc., r)nm), s >
T<
Proof We start with (3.8)
9 19 )
5um()ﬂ r)+ 3 9% (S[um](x, t)) =0.

Since S need not be a projection, there is no L?-energy conservation for the 2/3
smoothed solution u,,. Instead, we integrate against u y to find that the corresponding
energy balance reads

1d 1 0 )
o un(x, Huy,(x, t)dx = —E/uNaS[um](x,t)dx
1

9 1 d
= E/a—x(SuN)u,zn(x,t)dx = g/a—xufndx =0,

and hence the solution conserve the weighted L%-norm,

lm G, O = lun GO, un G DI, = / (Suy)undx

=27 Z ol ). (3.9)

k|<3N

We proceed along the lines of the spectral proof in Theorem 3.1, integrating |u,, —
ul?2 = lupm|* — |u|? = 2u(uy — u): after discarding all terms which are in divergence
form, we are left with

Ld [ Vax = 2 lum*  |ul? ( Y
2ar )T T 2 p MMm T J A

1d
=30 lum|?dx — / & Uy — u))dx =: I, + I».

Unlike the L2 conservation of the spectral solution u y, consult (3.4), there is no L2
energy conservation for the 2/3 smoothed solution u,, and we therefore leave Z; is
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left as perfect time derivative. As for the second term

I = / 0y (u(uy, —u))dx = / oru(Uy, — u)dx +/u(3,um — ou)dx,

we reproduce the same steps we had in the spectral case: using (3.1) and (3.8) to
convert time derivatives to spatial ones, we find

u,zn u? )
I = —/uux(um —u)dx—/uax > 7 dx+/u8x(I—S)[um]dx

u u? 1 2
= —/uux(um —u)dx —l—/ux (7 — ?) dx — E/MX(I — S)u;,ldx

2 2
/ux (% — % — u(uy — u)) dx — %/Mx(l — S)luy,ldx.

Eventually, we end up with

1d luax | 1
m/mm(x,r) —u(x,0)?dx < XT“/mm(x,t) —u(x, t)*dx + SeN(®)

1d
+M/|um(x,t)|2dx,

where the error term, ey is given by ey (¢) 1= — fufn(l — S)[uy]dx. Integrating in
time we find

/|um(x,t)—u(x,t)|2dx—/lum(x,O)—u(x,O)|2dx

t 1

< |uxloo / /lum(x,t)—u(x,t)|2dxdt+/eN(r)dt+fN(t), (3.10)
0

=0

with the additional error term, fy (), given by

v (o) :=/|um(x,r>|2dx—/|um<x,0>|2dx.

The error term ey (¢) can be estimated as before: observe that under the hypothesis
Uy € LfOCS*“, one has

In N
NC(

len (0] S max | (1 = S)ux . DI w72 <~ luw ¢ O)lI72 = 0. G.11)
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To address the new error term, fu(¢), we observe by the Lé-energy conservation

(3.9),

/|um(x,t>|2dx= > Rl = D ol = > ol (0)

k|<3N k|<3N k|<3N
= > otlurO + (o — o)[ir (0)*

lk|<3N
=/|um(x,0)|2+ > (k=) 1@

k|<3N

Since oy = 1 for |k| < N/3, consult (3.6¢), we conclude

fn (@) ::/|um(x,t)|2—/|um(x,0>|2
< 3 () mof < |(ry - r)ueof, o0

IN<IkI<EN
(3.12)

With (3.10), (3.12) and (3.11) in place, one obtains an estimate on the error integrated
in space-time

t

1d It oo 1 1
En() = "2, + 5 / en(@dr + 3 fy(0),

2dt 2
0

t
Enn (1) :=//|um(x,t)—u(x,r)|2dxdt.
0

Convergence follows by Gronwall’s inequality,

/ [t (x, 1) — u(x, t)|2dx

< el Deds (num(., 0) — u(- )l
2
L2 )

Moreover, with uy (-, 0) = Pyu(-, 0) we end up with spectral convergence rate esti-

+£1rasxt (I — S)uy(x, )| + H (P%N — P%N) M(',O)‘

mate
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/Ium(x,t) —u(x, 1)|?dx

| W

t 3
< efilus Dot (N_2S||u(~, O3 + N2~ max fJuc, r)an), s>
=

3.2 Instability for non-smooth solutions

In this section we discuss the spectral and the 2/3 de-aliased pseudo-spectral Fourier
approximations of Burgers’ equation, (3.1), after the formation of shock discontinu-
ities. We show that both methods are unstable after the critical time, r > T,. Recall
that the spectral method is a special case of the 2/3 de-aliased method when we set the
smoothing factors oy = 1, see Corollary 3.2. It will therefore suffice to consider the 2/3
de-aliasing pseudo-spectral Fourier method (3.8). We begin with its Lé-conservation
(3.9), which we express as

IS 2un . Ol = 1S un ¢ 0 2. SV Puy = Z Vorur().  (3.13)

|k|<m

Since the quadratic energy associated with S'/?uy is bounded, it follows that, after
extracting a subsequence if necess.ary3 that SY/2un (-, t) and hence u,, = Suy has
a L?-weak limit, #(x, ¢). But & cannot be the physically relevant entropy solution of
(2.1). Our next result quantifies what can go wrong.

Theorem 3.4 (The 2/3 method must admit spurious oscillations) Let T, be the critical
time of shock formation in Burgers’ equation (3.1). Let u,, = Suy denote the smoothed
2/3 de-aliasing Fourier method (3.6). Assume the LO-bound, ltem (-, t)|lp6 < Const
holds. Then, fort > T, there exists a constant co > 0 (independent of N ) such that*

max [ (x, D] X i (. OlFy = cov/m. (3.14)

Theorem 3.4 implies that either the solution of the 2/3 de-aliasing Fourier method,
Uy, = Suy, grows unboundedly,

lim |fup (-, 1) l|Lo —> 00,
N—o0

or it has an unbounded total variation of order > O(W ). Each one of these scenarios
implies that u,, contains spurious oscillations which are noticeable throughout the
computational domain, in agreement with the numerical evidence observed in [43].
We note that this type of nonlinear instability applies to both, the 2/3 method and

3 Here and below we continue to label such subsequences as u .

4 llum |7y denotes the total variation of uy,.
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in particular, the spectral Fourier method and we refer in this context to the recent
detailed study in [35,36] and the references therein.

Proof We begin with (3.8)

9 19 , 19 )
PR ’ ~ A ’ = S I_ ’ . ‘1 m
ot (x,1) + 28Xum(x 1) 28x( S)uy, 1(x, 1) (3.15)

Observe that the residual on the right tends to zero in H -1

[ (a-95)e
:/ I =8)—px) ) u;, (x, t)dx
0x

< llutm G OI24 % 1T = S)gx (2 — 0, Vg e H'.

9 2
/ @) — S)[u;,1(x, Hdx
0x

Next, we consider the L>-energy balance associated with (3.15). Multiplication by
u,, yields

10 10 1 d
55, m 00D+ ot (6 ) = S (6, D= = S0, (16

We continue our argument by claiming that if (3.14) fails, then the energy production
on the right of (3.16) also tends weakly to zero in H ~1 To this end, we examine the
weak form of the expression on the right which we rewrite as

/ @)U (x, r)%(PZm — S)[uZ 1(x, H)dx
_ / (Pam — 8) (@ ()it (x, 1) %ufnu, Ddx.

It does not exceed

‘ / w(x)umia — S)[u1(x, Hdx
0x

0
_ ‘ / (P = 8) (0t (5, 1)t (5, 1)t (v, )

= N Pom = ) (@ um (x, Nlpee X Num - Ollry X Num -, Dllge.  (3.17a)

To upper bound the first term we use standard decay estimate, |o;un(j)(1)| <
llety (-, ) l7v /(1 +1j]). Noting that Py, — S annihilates the first m /2 modes, namely,
the multipliers P»,,—S (k) =0, |k|] <m/2 = N/3, we find
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[(Pom — ) (@ (X)um (x, 1))l o0

< > U=on| > dk— pojun(j.D

2 <|k|<2m ljl<m
1
S Y X ark—iPwE-pr | Y
S — -
2 <ikl<2m | 1jl=m o A=A+ 179

X um G, OHllrv

1
S el g llum G OllTv x T (3.17b)

The last two inequalities (3.17) give us,

’ / @)t (x, D1 — S)[uZ1(x, t)dx
0ox
Nf||um( DOFy X G Dl Lo X @l

We claim that (3.14) holds by contradiction. If it fails, then we can choose a subse-
quence, Uy, , such that

1
2
My GOy X Ml GOl L < € e d 0,
k

and the energy production on the right of (3.16) vanishes in H~!. By assumption
u, (-, 1) € L? for r = 1,2, 3 and the div-curl lemma, [28,49,50] applies: it follows
that  is in fact a strong L>-limit, um, — u.Passing to the weak limit in (3.15),,, we
have that u is weak solution of Burgers’ equation (3.1),

9 W (x, 1)
u(x t)+a—( > )_0.

Moreover, passing to the weak limit in the energy balance (3.16),,, , we conclude that
u satisfies the quadratic entropy equality

=2 =3
i(“ W>)+i(“ (x’t))zo.
ot 2 ax 3

But, due to the uniqueness enforced with by the single entropy—in this case, the L>
energy, [33], there exists no energy conservative weak solution of Burgers equation
(3.1) after the critical time of shock formation. O
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Remark 3.5 The same result of instability holds if we employ the pseudo-spectral
Fourier method with a general smoothing operator beyond just the 2/3 smooth-
ing, namely Suy = 3 <y oriire’™ and smoothing factors oy decay too fast as
k| + N.

4 The 2/3 de-aliasing Fourier method for Euler equations
Convergence of the spectral and pseudo-spectral approximation for the Burgers equa-

tion made use of its quadratic flux, u?/2. The same approach can be pursued for the
Euler equations,

a

U+ P @eu =0, x € T, 4.1

where IP := Id — Vx A~ !divy is the Leray projection into divergence free vector fields.

4.1 Convergence for smooth solutions

We begin with the spectral method for the Euler equations

d
EuN + PV Py(uy ®uy) = 0. “4.2)

Convergence for smooth solutions in this case, is in fact even simpler than in Burgers’
equation. Observe that for any divergence free vectors fields, v and u, the following
identity holds

/((vvx(v@ov)—vvx(u®u>>,v—u> dxz/«v—u),S[u] (v — ) dx,

where S[u] is the symmetric part of the stress tensor S[u] := %(qu + VXuT). We
therefore have,

‘/ (PVy(uy ® uy) — PVx(u @), (uy — w)) dx| < | Vyul = [uy — uf?,

The error equation

9
g(UN —u) +PVx(uy ®uy) —PVx(u®u) = (I — Py)PVx(uy ® uy),
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implies

d 2
EE”uN - ll||Lz

< IVt fuy —ul7, + ‘/ (I = PN)[PVx(uy ® uy)], uy —u)dx

< |Vxul o uy —ul7, + ‘/ (I = Py)Vu)uy, uy) dx|. 4.3)

Arguing along the lines of our convergence statement for Burgers equations we con-
clude that the following result holds.

Theorem 4.1 (Spectral convergence for smooth solutions of Euler equations) Assume
that for 0 < t < T, the solution of the Euler equations (4.1) is smooth, u(-,t) €
L>([0, T.), C'*®(0, 271). Then its spectral Fourier approximation (4.2) converges
in L=([0, Tc], L*(T9)),

lun (G, ) —uC, Dl2 >0, 0=r<T,
and the following spectral convergence rate estimate holds

luy (-, 1) —u(, 1)

’ d
< Ao VUCOled® (N =25 (., 0) 13 + N3 max uC, Dl ), s > o + L.
~ <t 2

Proof Integrating (4.2) against uy we find the usual statement of L? energy conser-
vation,

luy ¢ D172 = luy (-, 0)]7,.

Using (4.3), we conclude

luy (. 1) —uC, D7, < V=E0) (1 = Py)u(, 07,
t

Hluy G 0)2, / AU (1 — Py)Vu(, 1) p~dr,
0

t
xUL(t: 7) 1= / Vxu(-, s)[[ds,
S=T
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which yields the spectral convergence rate estimate

luy G, 1) —u(, Dl
’ . o ¥ d
< U0 (Nzé lu(, 013 + NS5+ max ||u(, r)llm) . s>5+L
T=

(4.4)

Observe that the error estimate in the case of Euler equation depends on the truncation
error of Vxu, corresponding to the dependence on the truncation error of u in Burgers
equation. The additional loss factor of d /2 is due to the L°°(T¢)-bound, maxy |(I —
Py)w(x)| < |wllgs fors > d/2, consult (1.2). O

Next, we turn to the pseudo-spectral Fourier approximation of the Euler equations,
which reads

0
3/uy +PVxyy(uy ®uy) =0,

Observe that since 1y does not commute with PVy, there is no L2-energy conser-
vation. We introduce the smoothing operator Suy := Z‘ kl<m oy (1) which acts on

wavenumbers |k| < m = _%N , while leaving the first 1/3 portion of the spectrum
unchanged: oy = o (|k|/N), where o (1 — o) is supported in (%, %). The resulting 2/3
de-aliasing pseudo-spectral method reads

a
EuN + PVxyn (Suy @ Suy) = 0. 4.5)

It is the 2/3 Fourier method which is being used in actual computations, e.g., [19—
21,30] and the references therein. Next, we act with the smoothing S: arguing along
the lines of the 2/3 method for the Burgers’ equation in Corollary 3.2, we find that
the u,, := Suy satisfies the aliasing-free equation

d
Eum + SPVx(u,, ® u,,) = 0. 4.6)
Observe that since S commutes with differentiation, u,, retains incompressibility,
0
§um + PVxS(u,, ® u,,) = 0.

As before, we can integrate against uy to find by incompressibility of u,,,

1d

EE <UN(X, t)v um(X’ t))dX = _/ (SuN7 ]P)Vx(um ® um)) dx = 03
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which implies the weighted Lé-energy conservation,

lun GOl =y G0N, luv G0l = @) P oxfi®P.  (4.7)

Theorem 4.2 (Spectral convergence of 2/3 method for smooth Euler solutions)
Assume that for 0 < t < T, the solution of the Euler equations (4.1) is smooth,
u(-, 1) € L%([0, T.), C'*t%(0, 2n]). Then, the smoothed solution u,, = Suy
of its 2/3 de-aliasing pseudo-spectral Fourier approximation (4.5) converges in
L([0, T, L*(T)),

lw, (. 0) —a(, )llp2—>0, 0=t<T,
and the following spectral convergence rate estimate holds
[ (. 1) —u, D7,
d d
S edlVue-lode (N‘anu(-,onﬁ,s + N2 max u(., r>||m), s>+l
T<

Proof We rewrite (4.6) in the form

d
Eum +]va(um 02y um) = - 8) (va(um 02y um)) .

Subtract the exact equation (4.1): using the identity (4.3) we find, as before

2
——|u,;, —u
5 - lun —ul}

< [[Vxul gy, —u]l?; + ‘/ (I = S)PV(Un @ w1,y — u) dx

< [Vxull e lluy, —ull7, + V (I = S)Vxw) uy, uy) dx

+ ‘ / (I = 8)Vtn) U, ) dx|. 4.8)

The last term on the right is due to the fact that (/ — S) need not annihilate Vyu,,.
However, since u,, is incompressible, we find

/(((1 — S)VxUy) Uy, Uy ) dX = Z/umaaaumﬁ(l = S)uypdx
a.p
= Z/umd%aa (wng(I — S)uyp) dx
a?/g

_%/Zaauma Z (U s (I — S)tpg) dx = 0,

B
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We end up with the error bound

-, 1) —uC, D)2, S V01— Syu(, 0)]2,
t

4-num<u(»niét/?2”%‘“”u<l—-8>v;uo,r>uLwdr,
0
t

U&U;ﬂ:=‘ﬁﬁkuQSNuwd&

S=T

and spectral convergence rate follows. O

4.2 Failure of convergence for weak solutions?

We now turn to consider the convergence of the 2/3 Fourier method (4.5) for weak
solutions of Euler equations. Its m-mode de-aliased solution is governed by (4.6)

0
Eum + SPVx (w;; ® u,) = 0. 4.9)

The method is energy preserving in the sense that S'/?uy is L2-conservative, (4.7),
and hence u,, = Suy has s a weak limit, u. The question is to characterize whether
u(x, t) is an energy conserving weak solution of Euler equations (4.1),

9
S APV @E®® =0. (4.10)

To this end we compare (4.5) and (4.10): since u,, tends weakly to uw and d,u,, —
J:u, then comparing the remaining spatial parts of (4.5) and (4.10), yields that
SPlu,, ® u,](x, ) and hence Plu, ® u,](x,t) tends weakly to P[u ® u](x, ).
This, however, is not enough to imply the strong convergence of uy, as shown by a
simple counterexample of a 2D potential flow, uy = V,f- ® where

1
Oy (x1,x2) = NE(xl, x2)(sin Nxj + sin Nxp)

with E(x1, x2) € D(R?) localized near any point (say (0, 0)) with weak limit u = 0.
In this case w-limy_ o VP(uy @ uy) = VP@® u) = 0, yet uy = (u1n, uan)
satisfies

E(x1, x2)?

= 0.

w-lim (uiy)? = w-lim (uan)? =
N—oo N—oo

Although u need not be a weak solution of Euler equations, it satisfies a weaker notion
of a dissipative solution in the sense of DiPerna-Lions [24]. To this end, let w be a
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divergence-free smooth solution of
w+P(Vw@w) = E(w), PE(w)=0. 4.11)

Now, compare it with the 2/3 solution (4.9): the same computation with Gronwall
lemma leads to,

Iy = W) D7) < ">y — W, 072,

t
2y (0 g, / 1AW — W) )yt
0

t
+2 /ewéc‘“” ICE(W(7)), uy (7) — w(r))lldT,

0
t

x Wi (t; 1) == ﬁleW(', $) oo (yds.

S=T

Passing to the weak limit it follows that u is a dissipative solution, satisfying for all
divergence-free smooth solution of (4.11), the stability estimate

1@ =W D220 < " E0 @ =W 0122,
t
+2/62W40(t;r)|(E(w(f)),ﬁ(t)—w(f))|d7'
0

The notion of dissipative solution can be instrumental in the context of stability near
a smooth solution, w, or even in the context of uniqueness. However, the construction
of [5] does not exclude the existence of rough initial data for which the Cauchy prob-
lem associated with Euler equations (4.1) have an infinite set of dissipative solutions.
In fact, it is observed in [5] that any weak solution with a non-increasing energy,
la-, )|lz2 < [la(-, 0)]| 2, is a dissipative solution. These, so-called admissible solu-
tions, arise as solutions of the Cauchy problem for an infinite set of (rough) initial
data, and can be obtained as strong limit in C(0, T'; L%veak(Q)) of solutions for the
problem

duy +P(Vx(uy @uy) = Ey

with w-limEy = 0, while f(EN, uy )dx does not converge to 0.

We summarize the above observations, by stating that as long as the solution of the
Euler equations remains sufficiently smooth, then its spectral and de-aliased pseudo-
spectral approximations converge in L?(£2). Indeed, in Theorems 4.1 and 4.2, we quan-
tified the convergence rate for H*-regular solutions u. If u has a minimal smoothness
such that the vorticity @y := V xuy is compactly embedded in C ([0, T'], H™L(RNY),
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then by the div-curl lemma, uy (-, #) converges strongly in L*°([0, T], leoc (RM)) to
an energy-preserving limit solution u [25].

The situation is different, however, when dealing with “rough” solutions of the
underlying Euler equations. In the absence of any information re:the smoothness of
the underlying Euler solutions (as loss of smoothness for the 3D Euler equations
is still a challenging open problem), energy-preserving numerical method need not
shed light on the question of global regularity vs. finite-time blow-up. Recall that L?-
energy conservation was conjectured by Onsager [31] and verified in [3,8, 13] under
the assumption of minimal smoothness of u, but otherwise is not supported by the
energy decreasing solutions of Euler equation, [4,7,10].

The similar scenario of quadratic entropy conservation in the context of Burgers’
equations, is responsible for spurious oscillations, and its detailed analysis can be
found in [23] after [29]. Here, enforcing energy conservation at the “critical” time
when Euler solutions seem to lose sufficient smoothness leads to nonlinear instability
which manifests itself through oscillations noticeable throughout the computational
domain, in agreement with the numerical evidence observed in [17], see Fig. 2a below.
The precise large-time behavior of the (pseudo-) spectral approximations is intimately
related to a proper albeit yet unclear notion of propagating smoothness for solutions
of Euler equations which, even if they do not explicitly blow up, may exhibit spurious
oscillations due to the amplification factor in higher norms.

5 The spectral viscosity method: stability and spectral convergence

The nonlinear instability results in Sects. 3.2 and 4.2 emphasize the competition
between spectral convergence for smooth solutions vs. nonlinear instabilities for prob-
lems which lack sufficient smoothness. One class of methods for nonlinear evolution
equations which entertain both—spectral convergence and nonlinear stability, is the
class spectral viscosity (SV) methods, introduced in [43]. We demonstrate the SV
method in the context of Burgers equation,

3 19
UG ) + 5o (wN [u%,] (x, t)) — SV[un](x, 1), x € T([0,27)). (5.1a)

On the right of (5.1a) we have added a judicious amount of spectral viscosity of order
2r:

kI ~ ; 1
sV = -N Y o (B amer, o@ s (16 —~) . rz1
N NJ,
[k|<N

(5.1b)
Without it, the pseudo-spectral solution will develops spurious Gibbs oscillations
after the formation of shocks. Observe that the spectral viscosity term in (5.1b) adds a
spectrally small amount of numerical dissipation for high modes, £ >> 1 (in contrast for
”standard” finite-order amount of numerical dissipation in finite-difference methods),

ISVIwll e S N'@ PO |w)2s. VB <a—1€R.

~
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Indeed, the low-pass SV filter on the right of (5.1a) vanishes for modes |k| <
N@r=D/2 "which in turn leads to spectral convergence for smooth solutions. Arguing
along the lines of Theorem 3.3 we state the following.

Theorem 5.1 (Spectral convergence for smooth solutions of Burgers’ equations)
Consider the Burgers equation (3.1), with a smooth solution u(-,t) € L*°([0, T.],
C'*(0, 27]1). Then its spectral viscosity approximation (5.1),

d ¢ 18( 2] ot = SVIun)(xy. 1), v=0.1,....2N
g+ g (v [ ] een) =SV, v =01 2.

converges, |lun(-,t) —u(-,t)||;2 = 0 for 0 <t < T, and the following spectral
convergence rate estimate holds for all s > %

lun (1) —u, )|

¢ 21,3 3
S elo lexDlocde (N—zsnu(-,mn%p + N5 max r>||Hs), s> 3.
=

At the same time, spectral viscosity is strong enough to enforce a sufficient amount
of L? energy dissipation, which in turn implies convergence after the formation of
shock discontinuities. We quote below the convergence statement of the hyper-SV
method.

Theorem 5.2 (Convergence of the hyper-SV method for Burgers equation [43,45,47])
Let u be the unique entropy solution of the inviscid Burgers equation (3.1), subject to
uniformly bounded initial data ug, and let u be the spectral viscosity approximation
(5.1) subject to L™ data uy(0) ~ ug. Then, if uy remains uniformly bounded® it
converges to the unique entropy solution, |uy (-, t) —u(-,t)||;2 — O.

Remark 5.3 We note that unlike the 2/3 de-aliasing method, the SV method does
not completely remove the high-frequencies but instead, it introduces “just the right
amount” of smoothing for |k| > 1 which enables to balance spectral accuracy with
nonlinear stability. The SV method can be viewed as a proper smoothing which
addresses the instability of general smoothing of the pseudo-spectral Fourier method
sought in Remark 3.5. Moreover, even after the formation of shock discontinuities, the
SV solution still contains highly accurate information of the exact entropy solution
which can be extracted by post-processing [41].

Similar results of spectral convergence of SV methods hold in the context of incom-
pressible Euler equations [2,18,38],

0
3 + PVx¢n (Suy ® Suy) = SV[uy],

SVIuy](x, 1) := —N Z o ('NE) Uy (1)e'K*. (5.2)

k|=N

5 The question of uniform boundedness of u ; was proved for the second order SV method, corresponding
to r = 1, in [44], but it remains open for the hyper SV case with r > 1.
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In contrast to the spurious oscillations with the 2/3 methods shown in Fig. 2a, the
oscillations-free results in Fig. 2b correspond to the proper amount of smoothing
employed in [17]. Thus, the issue of adding “just the right amount” of hyper-viscosity
is particularly relevant in this context of Large Eddy Simulation (LES) for highly
turbulent flows, when one needs to strike a balance between a sufficient amount of
numerical dissipation for stability without giving up on high-order accuracy for phys-
ically relevant Euler (and Navier—Stokes solutions). The SV method in (5.2) adds this
balanced amount of hyper-viscosity [16,18,34,38,40].

6 Beyond quadratic nonlinearities: 1D isentropic equations

We consider the one-dimensional isentropic equations in Lagrangian coordinate,

B B

Pyl + aq(v) =0, ¢(>0 (6.1a)
9 + 0 0 (6.1b)
—v+ —u =0, .

dt ox

which is approximated by the spectral method

0 0
—uy +—qn) = — Py)g(vy), (6.2a)
ot ax
0 d
— — =0. 6.2b
a7 N + P (6.2b)

Denote by U the vector of conservative variables, U := (u, 07T, by F(U) the
corresponding flux, F(U) := (g (v), u) " and let n(U) be the entropy n(U) := %|u|2+
0(v), Q'(v) = g(v). Multiplying the system by Vyn(U) and integrating gives:

d unl|?
dt (| g| + undcqg(vy) +11(vN)8xuN) dx = /(1 — Py)g(vn)undx =0

and hence there the total entropy is conserved for both the exact an approximate
solutions®

8,/17(U)dx =0 and o9, / n(Uyn)dx = 0.
Continuing as in DiPerna—Chen [6,9, 12], we write
o / (n(UN) = nU) = {0/ (U), U, — U)) dx

=/(77”(U)Uz, (Uny — U))dx —/(n/(U), (Un) — Uy)dx

6 This intriguing property seems specific to the isentropic equation in Lagrangian coordinate.
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= —/(n”(U)F(U)x, Uy — U)dx

—/(ﬂ,(U), F(Un))x — F(U)x)dx + error term
=T+ +1 (6.3)

The first two terms on the right amount to

1T\ + Il = /(w”(U)F(U)x, Uy — U)dx + / (W' (U), FUN)x — F(U)x)dx

= / (" WF (U)Ux, Uy —U)dx — (n"(U)Ux, F(Uy) — F(U))dx

= /(n”(U)F/(U)Ux,UN—U)dx—<n”(U)Ux,F’(U)Ux+(9||UN—U||2>dx )

Since the entropy Hessian symmetrize the system, one has " (U)F'(U) =
F'(U)n"(U), and we conclude that the last expression does not exceed

1Z1 + o] = ’ / (n"(U)F'(U)Ux, Uy — U)dx — (n"(U)Uy, F(Uy) — F(U))dx

S WUt iUy = U2

On the other hand
73 = error term = /(I — Py)gc(vy)(u —un)dx = / 0xq(vy)(I — Pn)uydx

which goes to zero for sufficiently smooth u € C'*%. Inserting the last two bound
into (6.3) we find that

a,/ (n(UN) —nU) = (n'(U), U, = U)) dx S NUlc1 1UN = UJ* + o(1).

By strict convexity, the integrand on the left is of order ~ ||Uy — U ||*> and we conclude
the following.
Theorem 6.1 Assume that for 0 < t < T, the solution of the isentropic Euler equa-

tions (6.1) is smooth, U(-, t) € L*°([0, T,), Cclta (0, 21]). Then, its spectral approx-
imation (6.2) converge in L{° L)ZC,

NWUNG,t) =U(C, D)2 —>0, 0<t<T.
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